Tag Archive for: Pennsylvania

Shell Pipeline - Not Quite the Good Neighbor

Shell Pipeline: Not Quite the “Good Neighbor”

In August 2016, Shell Pipeline announced plans to develop the Falcon Ethane Pipeline System, a 97-mile pipeline network that will carry more than 107,000 barrels of ethane per day through Pennsylvania, West Virginia, and Ohio, to feed Shell Appalachia’s petrochemical facility currently under construction in Beaver County, PA.

FracTracker has covered the proposed Falcon pipeline extensively in recent months. Our Falcon Public EIA Project explored the project in great detail, revealing the many steps involved in risk assessments and a range of potential impacts to public and environmental health.

This work has helped communities better understand the implications of the Falcon, such as in highlighting how the pipeline threatens drinking water supplies and encroaches on densely populated neighborhoods. Growing public concern has since convinced the DEP to extend public comments on the Falcon until April 15th, as well as to host three public meetings scheduled for early April.

Shell’s response to these events has invariably focused on their intent to build and operate a pipeline that exceeds safety standards, as well as their commitments to being a good neighbor. In this article, we investigate these claims by looking at federal data on safety incidents related to Shell Pipeline.

Contrary to claims, records show that Shell’s safety record is one of the worst in the nation.

The “Good Neighbor” Narrative

Maintaining a reputation as a “good neighbor” is paramount to pipeline companies. Negotiating with landowners, working with regulators, and getting support from implicated communities can hinge on the perception that the pipeline will be built and operated in a responsible manner. This is evident in cases where Shell Pipeline has sold the Falcon in press releases as an example of the company’s commitment to safety in public comments.

Figure 1. Shell flyer

A recent flyer distributed to communities in the path of the Falcon, seen in Figure 1, also emphasizes safety, such as in claims that “Shell Pipeline has a proven track record of operating safely and responsibility and remains committed to engaging with local communities regarding impacts that may arise from its operations.”

Shell reinforced their “good neighbor” policy on several occasions at a recent Shell-sponsored information meeting held in Beaver County, stating that, everywhere they do business, Shell was committed to the reliable delivery of their product. According to project managers speaking at the event, this is achieved through “planning and training with first responders, preventative maintenance for the right-of-way and valves, and through inspections—all in the name of maintaining pipeline integrity.”

Shell Pipeline also recently created an informational website dedicated to the Falcon pipeline to provide details on the project and emphasize its minimal impact. Although, curiously, Shell’s answer to the question “Is the pipeline safe?” is blank.

U.S. Pipeline Incident Data

Every few years FracTracker revisits data on pipeline safety incidents that is maintained by the Pipeline and Hazardous Materials Safety Administration (PHMSA). In our last national analysis we found that there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion.

These numbers were based on U.S. data from 2010-2016 for natural gas transmission and gathering pipelines, natural gas distribution pipelines, and hazardous liquids pipelines. It is also worth noting that incident data are heavily dependent on voluntary reporting. They also do not account for incidents that were only investigated at the state level.

Shell Pipeline has only a few assets related to transmission, gathering, and distribution lines. Almost all of their pipeline miles transport highly-volatile liquids such as crude oil, refined petroleum products, and hazardous liquids such as ethane. Therefore, to get a more accurate picture of how Shell Pipeline’s safety record stacks up to comparable operators, our analysis focuses exclusively on PHMSA’s hazardous liquids pipeline data. We also expanded our analysis to look at incidents dating back to 2002.

Shell’s Incident Record

In total, PHMSA data show that Shell was responsible for 194 pipeline incidents since 2002. These incidents spilled 59,290 barrels of petrochemical products totaling some $183-million in damages. The below map locates where most of these incidents occurred. Unfortunately, 34 incidents have no location data and so are not visible on the map. The map also shows the location of Shell’s many refineries, transport terminals, and off-shore drilling platforms.

Open the map fullscreen to see more details and tools for exploring the data.


View Map Fullscreen | How FracTracker Maps Work

Incidents Relative to Other Operators

PHMSA’s hazardous liquid pipeline data account for more than 350 known pipeline operators. Some operators are fairly small, only maintaining a few miles of pipeline. Others are hard to track subsidiaries of larger companies. However, the big players stand out from the pack — some 20 operators account for more than 60% of all pipeline miles in the U.S., and Shell Pipeline is one of these 20.

Comparing Shell Pipeline to other major operators carrying HVLs, we found that Shell ranks 2nd in the nation in the most incidents-per-mile of maintained pipeline, seen in table 1 below. These numbers are based on the total incidents since 2002 divided by the number of miles maintained by each operator as of 2016 miles. Table 2 breaks Shell’s incidents down by year and number of miles maintained for each of those years.

Table 1: U.S. Pipeline operators ranked by incidents-per-mile

Operator HVL Incidents HVL Pipeline Miles Incidents Per Mile (2016)
Kinder Morgan 387 3,370 0.115
Shell Pipeline 194 3,490 0.056
Chevron 124 2,380 0.051
Sunoco Pipeline 352 6,459 0.049
ExxonMobile 240 5,090 0.048
Colonial Pipeline 244 5,600 0.044
Enbride 258 6,490 0.04
Buckeye Pipeline 231 7,542 0.031
Magellan Pipeline 376 12,928 0.03
Marathan Pipeline 162 5,755 0.029

Table 2: Shell incidents and maintained pipeline miles by year

Year Incidents Pipeline Miles Total Damage Notes
2002 15 no PHMSA data $2,173,704
2003 20 no PHMSA data $3,233,530
2004 25 5,189 $40,344,002 Hurricane Ivan
2005 22 4,830 $62,528,595 Hurricane Katrina & Rita
2006 10 4,967 $11,561,936
2007 5 4,889 $2,217,354
2008 12 5,076 $1,543,288
2009 15 5,063 $11,349,052
2010 9 4,888 $3,401,975
2011 6 4,904 $2,754,750
2012 12 4,503 $17,268,235
2013 4 3,838 $10,058,625
2014 11 3,774 $3,852,006
2015 12 3,630 $4,061,340
2016 6 3,490 $6,875,000
2017 9 no PHMSA data $242,800
2018 1 no PHMSA data $47,000 As of 3/1/18

Cause & Location of Failure

What were the causes of Shell’s pipeline incidents? At Shell’s public informational session, it was said that “in the industry, we know that the biggest issue with pipeline accidents is third party problems – when someone, not us, hits the pipeline.” However, PHMSA data reveal that most of Shell’s incidents issues should have been under the company’s control. For instance, 66% (128) of incidents were due to equipment failure, corrosion, welding failure, structural issues, or incorrect operations (Table 3).

Table 3. Shell Pipeline incidents by cause of failure

Cause Incidents
Equipment Failure 51
Corrosion 37
Natural Forces 35
Incorrect Operation 25
Other 20
Material and/or Weld Failure 15
Excavation Damage 11
Total 194

However, not all of these incidents occurred at one of Shell’s petrochemical facilities. As Table 4 below illustrates, at least 57 incidents occurred somewhere along the pipeline’s right-of-way through public areas or migrated off Shell’s property to impact public spaces. These numbers may be higher as 47 incidents have no mention of the property where incidents occurred.

Table 4. Shell Pipeline incidents by location of failure

Location Incidents
Contained on Operator Property 88
Pipeline Right-of-Way 54
Unknwon 47
Originated on Operator Property, Migrated off Property 3
Contained on Operator-Controlled Right-of-Way 2
Total 194

On several occasions, Shell has claimed that the Falcon will be safely “unseen and out of mind” beneath at least 4ft of ground cover. However, even when this standard is exceeded, PHMSA data revealed that at least a third of Shell’s incidents occurred beneath 4ft or more of soil.

Many of the aboveground incidents occurred at sites like pumping stations and shut-off valves. For instance, a 2016 ethylene spill in Louisiana was caused by lightning striking a pumping station, leading to pump failure and an eventual fire. In numerous incidents, valves failed due to water seeping into systems from frozen pipes, or large rain events overflowing facility sump pumps. Table 5 below breaks these incidents down by the kind of commodity involved in each case.

Table 5. Shell Pipeline incidents by commodity spill volumes

Commodity Barrels
Crude Oil 51,743
Highly Volatile Liquids 6,066
Gas/Diesel/Fuel 1,156
Petroleum Products 325
Total 59,290

Impacts & Costs

None of Shell’s incidents resulted in fatalities, injuries, or major explosions. However, there is evidence of significant environmental and community impacts. Of 150 incidents that included such data, 76 resulted in soil contamination and 38 resulted in water contamination issues. Furthermore, 78 incidents occurred in high consequence areas (HCAs)—locations along the pipeline that were identified during construction as having sensitive environmental habitats, drinking water resources, or densely populated areas.

Table 6 below shows the costs of the 194 incidents. These numbers are somewhat deceiving as the “Public (other)” category includes such things as inspections, environmental cleanup, and disposal of contaminated soil. Thus, the costs incurred by private citizens and public services totaled more than $80-million.

Table 6. Costs of damage from Shell Pipeline incidents

Private Property Emergency Response Environmental Cleanup Public (other) Damage to Operator Total Cost
$266,575 $62,134,861 $11,024,900 $7,308,000 $102,778,856 $183,513,192

A number of significant incidents are worth mention. For instance, in 2013, a Shell pipeline rupture led to as much as 30,000 gallons of crude oil spilling into a waterway near Houston, Texas, that connects to the Gulf of Mexico. Shell’s initial position was that no rupture or spill had occurred, but this was later found not to be the case after investigations by the U.S. Coast Guard. The image at the top of this page depicts Shell’s cleanup efforts in the waterway.

Another incident found that a Shell crude oil pipeline ruptured twice in less than a year in the San Joaquin Valley, CA. Investigations found that the ruptures were due to “fatigue cracks” that led to 60,000 gallons of oil spilling into grasslands, resulting in more than $6 million in environmental damage and emergency response costs. Concerns raised by the State Fire Marshal’s Pipeline Safety Division following the second spill in 2016 forced Shell to replace a 12-mile stretch of the problematic pipeline, as seen in the image above.

Conclusion

These findings suggest that while Shell is obligated to stress safety to sell the Falcon pipeline to the public, people should take Shell’s “good neighbor” narrative with a degree of skepticism. The numbers presented by PHMSA’s pipeline incident data significantly undermine Shell’s claim of having a proven track record as a safe and responsible operator. In fact, Shell ranks near the top of all US operators for incidents per HVL pipeline mile maintained, as well as damage totals.

There are inherent gaps in our analysis based on data inadequacies worth noting. Incidents dealt with at the state level may not make their way into PHMSA’s data, nor would problems that are not voluntary reported by pipeline operators. Issues similar to what the state of Pennsylvania has experienced with Sunoco Pipeline’s Mariner East 2, where horizontal drilling mishaps have contaminated dozens of streams and private drinking water wells, would likely not be reflected in PHMSA’s data unless those incidents resulted in federal interventions.

Based on the available data, however, most of Shell’s pipelines support one of the company’s many refining and storage facilities, primarily located in California and the Gulf states of Texas and Louisiana. Unsurprisingly, these areas are also where we see dense clusters of pipeline incidents attributed to Shell. In addition, many of Shell’s incidents appear to be the result of inadequate maintenance and improper operations, and less so due to factors beyond their control.

As Shell’s footprint in the Appalachian region expands, their safety history suggests we could see the same proliferation of pipeline incidents in this area over time, as well.

NOTE: This article was amended on 4/9/18 to include table 2.

Header image credit: AFP Photo / Joe Raedle

By Kirk Jalbert, FracTracker Alliance

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

White Paper (PDF)

Mariner East 2: More Spills & Sinkholes Too?

The Mariner East 2 (ME2) pipeline, currently being built by Sunoco Pipeline (Energy Transfer Partners), is a massive 350-mile long pipeline that, if completed, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.

ME2 has faced numerous challenges from concerned citizens since Sunoco first announced plans for the project in 2014. Fights over taking private property by eminent domain, eyebrow raising permit approvals with known technical deficiencies, as well as nearly a hundred drilling mud spills — inadvertent returns (IRs) — at horizontal directional drilling (HDD) sites have occurred since work began in 2017.

This article and the accompanying map brings us up-to-date on the number, location, and status of ME2’s HDD spills. We also summarize the growing list of violations and settlements related to these events. Finally, we highlight the most recent concerns related to ME2’s construction: sinkholes emerging along the pipeline’s path in karst geological formations.

Map of ME2 Updated HDDs, IRs & Karst

The map below shows an updated visual of ME2’s IRs, as of the DEP’s latest tally on March 1, 2018. Included on this map are HDDs where DEP ordered Sunoco reevaluate construction sites to prevent additional spills. Also identified on this map are locations where Sunoco was ordered to notify landowners in close proximity to certain HDDs prior to additional drilling. Finally, the below map illustrates how sinkholes are not a problem unique to one site of construction but are, in fact, common to many areas along ME2’s route. These topics are discussed in greater depth below.

Open the map full-screen to view additional layers not available in the embedded version below.

View Map Fullscreen | How FracTracker Maps Work

HDDs & Inadvertent Returns – Redux

In July 2017, the PA Environmental Hearing Board granted a two week halt to ME2’s HDD operations. The temporary injunction was in response to petitions from the Clean Air CouncilMountain Watershed Association, and the Delaware Riverkeeper Network following IRs­­ at more than 60 sites that contaminated dozens of private drinking water wells, as well as nearby streams and wetlands. FracTracker first wrote about these issues in this prior article.

HDD IR in Washington County
(image: Observer-Reporter)

Despite these issues, and despite Sunoco being cited for 33 violations, ME2 was allowed to proceed under an August 7th agreement that stated Sunoco must reevaluate their HDD plans to minimize additional spills. These studies were to include re-examining the site’s geology and conducting seismic surveys. Sites for reevaluation were selected based on factors such as proximity water supplies, nearby streams and wetlands, problematic geologic conditions, and if an IR had occurred at that site previously. Of ME2’s 230 HDDs, 64 were ordered for reevaluation — 22 of these were selected due to prior IRs occurring at the site.

The DEP mandated that Sunoco’s reevaluation studies be put out for public comment. A table of which HDD studies are currently out for comment can be found here. DEP’s settlement also required Sunoco to notify landowners in proximity to certain HDDs prior to commencing construction due to elevated risks. Of the 64 HDD sites under review, Sunoco must notify 17 residents within 450ft of an HDD site, and 22 residents within 150ft of other sites. The HDD reevaluation sites are shown on the FracTracker map above. Below is an illustration of one site where Sunoco is required to notify landowners within 450ft.

One issue residents have raised with these notifications is that Sunoco is allowed to offer landowners the option to connect their homes to a water buffalo during drilling as an alternative to using their groundwater well. The catch is that, if their well does become contaminated, they would also waive their right to have Sunoco drill them a new replacement well.

“Egregious Violations”

In January 2018, the DEP again suspended ME2’s construction, this time indefinitely revoking their permits, due to even more IRs. DEP also cited Sunoco for “egregious and willful” permit violations —mainly executing HDDs at sites where they had no permission to do so. The DEP noted of their decision that, “a permit suspension is one of the most significant penalties DEP can levy.”

Nevertheless, Sunoco was again allowed to resume construction on February 8, 2018, after paying a $12.6 million fine. The DEP press release accompanying the decision assured the public that, “Sunoco has demonstrated that it has taken steps to ensure the company will conduct the remaining pipeline construction activities in accordance with the law and permit conditions, and will be allowed to resume.”

A few weeks later, Sunoco ran a full-page advertisement in the Harrisburg Patriot-News, shown above, lauding their safety record. Among other notables, the piece boasts, “State and federal regulators spent more than 100 inspection days during 2017 on the Mariner East project, more inspection days than on any other pipeline in Pennsylvania.” Critics have noted that the inordinate number of inspections are due to the comedy of errors associated with ME2’s construction.

Karst Formations & Sinkholes

Which brings us to the current ME2 debacle. Last week, the PA Public Utility Commission (PUC) ordered a temporary shutdown of Mariner East 1 (ME1), another natural gas liquids pipeline owned by Sunoco/ETP. ME1 was built in the 1930s and its right-of-way is being used for most of ME2’s route across the state. This latest construction setback comes in the wake of numerous sinkholes that emerged beginning in December along Lisa Drive in West Whitehead Township, a suburb of Philadelphia in Chester County.

The most recent of these sinkholes grew into a 20ft-deep, 15ft-wide chasm that exposed portions of ME1 and came within 10ft of a house. It is worth noting that, until only a few days ago, ME1 was an operational 8in pipeline with a potential impact radius (aka “blast zone”) of some 500ft. The PUC ordered that Sunoco must now run a line inspection on ME1 for a mile upstream and a mile downstream from the sinkhole sites along Lisa Drive, seen in the image below. Note the proximity of these sinkholes to Amtrak’s Keystone rail lines (connecting Pittsburgh to Philadelphia), under which ME2 also runs. The Federal Railway Administration only recently learned of the sink holes from a nearby resident.

The Lisa Drive sinkholes are being credited to Sunoco executing an HDD in an area known to have karst geological formations. Sunoco has been ordered by the PUC to conduct more geophysical testing and seismic analyses of the area because of this. Karst is often called the “Swiss cheese” of geology — notorious for caves, sinkholes, and underground rivers. As these geological formations change shape, pipelines can bend and settle over time, ultimately leading to potentially dangerous gas leakages or explosions. For instance, the 2015 Atex-1 pipeline explosion in Follansbee, WV, was ultimately determined by the Pipeline and Hazardous Materials Safety Administration (PHSA) as having been caused by ground settling. That explosion released some 24,000 barrels of ethane, burning more than five acres of surrounding land.

The US Geological Survey (USGS) maintains fairly detailed maps of rock formations for most states, including formations known to have karst. In PA, there are a number of “carbonate” rock families known for karst features and settlement issues: limestone and dolostone, and, to a lesser extent, shale. Meanwhile, the PA Department of Conservation and Natural Resources (DCNR) has maintained a record of karst “features” — sinkholes and surface depressions — documented since 1985. A great explanation of the different types of karst features can be found here.

Underestimating the Risks

What is concerning about the Lisa Drive sinkholes is that Sunoco had supposedly already conducted additional karst geological reviews of the area as part of the August DEP settlement, subsequently ranking a nearby HDD (#PA-CH-0219) as “low risk” for running into karst issues—despite knowing the HDD runs through a karst formation with sinkholes and surface depressions in the area. For the HDD that runs the length of Lisa Drive (#PA-CH-0256), the study rated its risk as “very low.” These two HDDs are shown below, along with the area of ME1 now under structural review.

The likely result of these inaccurate assessments led to two IRs at Lisa Drive, one in October and another in November 0f 2017. DEP’s writeup of these events note that the total volume of drilling muds spilled remains unknown because Sunoco didn’t report the incident. Then, only a month later, sinkholes emerged in the same locations. An image of the November HDD IR is shown below.

It is important to note two additional things of Sunoco’s karst study, an except of which is seen in their map of the West Whiteland area below. First, Lisa Drive is just on the edge of a karst limestone formation. USGS data suggest the location is actually mica schist, but the USGS data is also only a rough estimate of different formations. This underscores why pipeline companies must be required to conduct detailed geotechnical analysis of all HDD sites at the onset of their projects.

The other notable aspect of Sunoco’s study is that it does not fully represent all rock formations known to have karst features. In Sunoco’s map, we see orange shading for limestone, but this does not include dolostone that underlies the many surface depressions and sinkholes surrounding West Whiteland. FracTracker’s map includes these formations for greater accuracy.

Takeaways

Interestingly, as Anya Litvak of the Pittsburgh Post-Gazette observed in her reporting on the Lisa Drive incident, Sunoco’s updated karst assessment ranked the entire route of the ME2 pipeline through the state as “low to very low” risk for potential issues. Furthermore, Sunoco has tried to downplay the Lisa Drive incident, stating that “all areas have been secured,” and that additional incidents are unlikely to occur.

But the overall relationship between Mariner East 2’s IRs, HDD sites, and known karst features tells a very different story than Sunoco’s about the potential risks of ME2. In addition to the concerns about new sinkholes near Lisa Drive, FracTracker found the following in our analysis:

  • 7 sinkholes and 386 surface depressions are within 1,500ft of a ME2 HDD site.
  • Of the 230 HDDs, 87 are located in carbonate rock areas (52 in limestone/dolostone, 35 in shale).
  • Of the 99 IRs, 39 have occurred in carbonate rock areas (23 in limestone/dolostone, 16 in shale).

In other words, nearly half of the IRs caused by ME2 HDDs were located in areas known to have karst formations. Worth noting is that an additional 15 occurred in sandstone formations, also known to cause settlement over time. The remaining IRs are split across nine other formation types.

Considering that the DEP’s current review of Sunoco’s ability to safely execute future HDDs are based on the same karst study that missed the Lisa Drive HDD and ranked nearby HDDs as a “low” risk, one can only assume that additional spills will occur. There are many more HDD sites yet to be drilled, and also not likely studied fully for potential karst risks. As illustrated by the continuing saga of spills, violations, and omissions, it is clear that Sunoco has not maintained a high standard of construction in building ME2 from the onset.

We thank Eric Friedman from the Middletown Coalition for Community Safety for supplying photos of the Lisa Drive site used in this article.

By Kirk Jalbert, FracTracker Alliance

High Impact Areas and Donut Holes - Variability in PA's Unconventional O&G Industry map

High Impact Areas and Donut Holes – A Look at Unconventional O&G Activity in PA

FracTracker Alliance has been mapping the impacts of unconventional oil and gas (O&G) drilling activity in Pennsylvania since 2010, and the Pennsylvania Shale Viewer is our most complete map to show the impacts of the industry.

While it can rightly be said that the development of the Marcellus Shale and other unconventional formations have affected half the state since 2005, this analysis takes a look at high impact areas, as well as a closer look at areas that have been avoided so far.

Explore the Story Map

High Impact Areas and Donut Holes
Variability in PA’s Unconventional Oil and Gas Industry


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Falcon Public EIA Project feature image

Wingspan of the Falcon Pipeline

A Public EIA of Shell’s Ethane Cracker Pipeline

Pittsburgh, Pennsylvania – Jan. 29 – FracTracker Alliance has released a detailed environmental impact assessment (EIA), including digital maps, of the Falcon Ethane Pipeline being built to feed Shell Appalachia’s ethylene cracker plant in Beaver County, PA.

FracTracker’s Falcon Public EIA Project offers a rich series of interactive maps and articles detailing the Falcon’s proposed route through PA, WV, and OH, likely impacts to waterways, potential blast zones, ecological footprint, proximity to hazardous industrial areas, and more.

Given the issues associated with Mariner East 2 – a PA-based natural gas liquids pipeline whose history has been fraught with citations, public scrutiny is a crucial facet of pipeline construction. The Falcon Public EIA Project represents the first time that public stakeholders have been given such a significant amount of time and detail to investigate a proposed pipeline, including access to specific location information. Public comments are being accepted by the PA Department of Environmental Protection on the Falcon’s permit until February 20th.

“Companies are generally not required to publicly disclose GIS data when applying for permits,” remarked Kirk Jalbert, project lead and Manager of Community Based Research and Engagement at FracTracker. “While concerned citizens can stitch together paper maps provided by companies in their applications, that process can be complex and very labor intensive.”

With FracTracker’s project, however, digital maps and figures are front and center.

Early access to what is being proposed for the Falcon pipeline will enable nearby communities to better understand how its construction and the associated ethane cracker facility, which will produce 1 million tons of ethylene annually for making plastics, will affect their lives. Upon analyzing the data, FracTracker uncovered a number of particularly noteworthy statistics, for example:

  • There are 97.5 miles of pipeline proposed to be built through 22 townships in 3 states.
  • 2,000 properties have been surveyed; 765 easements executed.
  • Falcon will intersect 319 streams and 174 wetlands, with hundreds more proximate to work areas.
  • 550 family residences, 20 businesses, 240 groundwater wells, 12 public parks, 5 schools, 6 daycare centers, and 16 emergency response centers are within potential risk areas.
  • Learn more

“Extreme levels of risk and injustice are commonplace in petrochemical pipeline siting, as well as in where their contents come from and how they get used. This project provides context for the importance of reducing these impacts, both for curtailing environmentally unfriendly plastics as well as for moving away from fossil fuel dependencies,” said Brook Lenker, Executive Director of FracTracker.

The Falcon Public EIA Project is meant to expand public dialogue about what should be included in EIAs and how they should apply to petrochemical pipelines. The project also serves as a model for how regulatory agencies can be more transparent with data when engaging the public. This is especially important in the case of the Falcon pipeline, which will be exempt from Federal Energy Regulatory Commission (FERC) scrutiny and, therefore, not be subject to a full environmental impact assessment.

Explore the Falcon Public EIA Project

The Falcon: Routes, Facilities & Easements

Part of the Falcon Public EIA Project

In this segment of the Falcon Public EIA Project, we first focus on the route of the pipeline and prior routes that were considered. We take a closer look at the properties along the route that required easement agreements from landowners. Finally, we locate facilities that will be built as part of the project, such as metering stations and shut-off valves, as well as the pipeline’s construction areas and access roads.

Quick Falcon Facts

  • 97.5 miles of proposed pipeline (an additional 200+ miles surveyed during the process)
  • 2,000 parcels of land surveyed; 765 easements executed; 469 will be needed to execute the route
  • Five meter pads and 18 shut-off valves
  • 111 temporary access roads, 21 permanent access roads
  • 1,273 acres required for construction space; 650 acres for the permanent right-of-way

Map of Falcon pipeline routes, properties, and facilities

The following map will serve as our guide in breaking down these first components. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible at closer zoom levels. Click the “details” tab in full-screen mode to read how the different layers were created.

View Map Fullscreen | How FracTracker Maps Work


Finding a Right-of-Way

Pipeline operators must consider a variety of factors when searching for a viable right of way (ROW) for their project—the continuous stretch of land needed to construct, maintain, and operate the pipeline. This process begins with reviewing data and maps made available by federal, state, and local agencies in order to identify features that would complicate the project. These might include such things as protected wetlands, drinking water sources, abandoned mines, or heavily populated areas.

A second step is to conduct manual field surveys along their planned route. During this stage, engineers do precise measurements to determine how the pipeline will cross individual properties as well as locate site-specific concerns that need to be accounted for, such as the presence of endangered species or archeological sites. FracTracker previously produced a guide to pipeline surveying, which can be found here.

The process of finding a viable pipeline route can undergo dozens of revisions and take months or years to complete. The example image seen below, taken from our interactive map at the top of the page, shows a few of the many different 50ft. ROWs considered by Shell. These were documented every few months as the data changed.

A section of the Falcon route with prior routes considered

The most recent route is highlighted in red, totaling 97.5 miles (Shell’s original press releases stated 94 miles). Segments that represent alternative routes considered in certain places are shown in blue (these earlier divergences total 19 miles). Other areas surveyed at some point in the process are shown in dotted purple (totaling 91.3 miles). Given that the route has changed very little in recent months, as well as the fact that Shell has submitted their permit applications for project, we believe that the route in red is likely the route proposed to regulatory agencies.

Note that, in the interactive map, there is an additional “Air Liquide” pipeline (this is the name of a gas products company) proposed by Shell that will run from the ethane cracker south for about .5 miles. Based on comments made by Shell at public hearings, we assume this will be a nitrogen pipeline feeding the plant from an unknown source.

Acquiring Easements

Perhaps the most significant factor that can determine a pipeline route is finding landowners amenable to having their land surveyed and, ultimately, willing to sign easements to allow the pipeline on their property. In some instances, pipeline companies can be granted eminent domain as a “public utility” to take land by force (ME2). However, Shell has stated publicly that eminent domain in not an option for Falcon, due to the fact that the pipeline services a private facility. FracTracker previously produced a guide for landowners who might be approached by pipeline operators seeking to survey their properties.

The Falcon pipeline will have a permanent ROW of 50ft that will cross 10 municipalities in Pennsylvania, 12 townships in Ohio, as well as northern Hancock County, West Virginia. More than 2,000 individual parcels of land were surveyed across this region. Of those 2,000, Shell approached landowners for 765 unique parcels at some point in the process to obtain easements, either for the pipeline ROW itself or for access roads.

To date, Shell has executed 572 easements. Of these, 469 will be needed to execute the current proposed route. However, as of this time, 14 parcels along the proposed route are still listed as “landowner contacted,” meaning that the easement has not yet been executed. The image below is a page from Shell’s permit applications to the PA DEP listing properties pending in Pennsylvania.

Pending PA easements from Shell’s permit applications

Media sources have reported on some of the details of Shell’s Pipeline easement agreements. In some instances, contracts stated a transactional price of $10 per linear foot as a “placeholder” to get the process started. In other cases, Shell has paid landowners as much as $75 per linear foot of pipeline. These agreements also state that Shell reserved the right to “lay, construct, test, maintain, inspect, operate, repair, renew, relocate, replace, substitute, change the size of, upgrade, alter, mark, protect and remove or abandon in place” any pipelines on the property. Below is an example of how our interactive map represents these parcels and their status. For instance, executed easements are in green and pending or stalled agreements in yellow.

Parcels along the Falcon route and their easement status

Valves & Metering Stations

Pipelines require a number of facilities to properly manage the flow and pressure of gas from one end of the line to another. For instance, metering stations are installed to measure how much gas is in the pipeline system at given points. Falcon has five “pads” where metering stations will be located. Three of these are co-located at the origin points of the pipeline (the MarkWest separator facilities) and a fourth at the ethane cracker end-point. However, the fifth meter stations will be located where the two legs of the pipeline meet in northeast Raccoon Township, Beaver County, PA. This site is called the “Junction” meter pad.

Shut-off valves will also placed along the route—18 in all for Falcon—in order to section off lengths of the pipeline that can be turned off as needed. These valves will be located at fairly regular intervals of 8-10 miles in most places, but are also found just before and after sensitive locations, such as the Oho River crossing and areas and where the lines juncture.

The Risks of Proximity

Metering stations and shut-off valves bring particular risks. For instance, when valves are closed at a section of pipeline for maintenance, or in the event of an emergency, excess gasses must vented to relieve pressure. This is one reason why communities have become concerned about the location of these facilities, such as with a Mariner East 2 pipeline valve in West Goshen Township, PA. Similarly, the Falcon pipelines’ valve in New Somerset, OH, is especially close to residential areas, seen below.

A proposed Falcon shut-off valve site in New Somerset, Ohio

Workspaces & Access Roads

Finally, pipeline operators must identify in their permit applications the “workspace” needed for construction. Shell’s temporary ROW for workspace is approximately 100ft in most stretches along the Falcon’s route, similar to what is shown in the image below. Site-specific conditions, such as road, railroad crossings, and buildings make the workspace narrower in some instances, but much larger workspaces will be needed around sites like metering stations and shut-off valves.

A typical pipeline workspace; this one from the Mariner East 2

The locations of access roads must also be identified in permit applications. Access roads come in two categories and typically require a 25ft ROW. Temporary access roads are used during the construction process and often utilize existing private driveways, farm roads, or are built after clearing land acquired in the easement process. Permanent roads allow long-term access to facilities, such as valves and pumping stations, as well as for bringing in equipment to maintain the pipeline’s ROW. Shell’s plan proposes 111 temporary access roads (28 miles) and 21 permanent access roads (2.3 miles).

Shell’s permit applications state that the total disturbed workspace needed for construction and access roads is approximately 1,273 acres. About half of this will remain cleared for the permanent right-of-way and permanent access roads.

A Closer Look

When a pipeline project is subject to regulatory review, alternative routes are typically offered up by the operator for consideration in weighing different costs and benefits. Major reroutes typically deviate from the proposed route for significant distances in order to avoid significant impediments such as large cities or protected lands. Minor alternatives are shorter in length and used to avoid specific areas of concern, such as a protected wetland. An alternative route might also be selected in order to utilize an existing ROW from other pipelines.

Ohio River Crossing

As noted, there are a number of places along the Falcon route where we see examples of major route changes. Many of these reroutes appear to be due to landowners along the preferred path not signing easements for one reason or another. One of the more significant change occurred at the location where the Falcon crosses the Ohio River in Hancock County, West Virginia, seen below. For many months, Shell’s maps showed a planned crossing south of the current proposed route, but later took a dramatic diversion to the north, apparently due to an easement not having been executed for a single property. What is notable about the new route is that it utilizes property owned by the popular Mountaineer Casino, Racetrack, and Resort.

The current and former Falcon route crossing the Ohio River

Fort Cherry Golf Course Reroute

In another instance, we see a reroute near the Fort Cherry Golf Course in McDonald, Washington County, PA. An earlier route took the Falcon straight through the course, whereas the current proposed route goes further east, disrupting a smaller number of fairways. Notice in the image below that a temporary access road for the pipeline’s construction will also still utilize Fort Cherry Golf Course’s driveway.

The current and former Falcon routes crossing the Ft. Cherry Golf Course

Montour Trail Intersections

Finally, we bring attention to what appears to be some of the few remaining properties with easements not yet settled in order to begin construction. As noted in the excerpt from Shell’s permit application at the top of this page, a number of parcels owned by the Montour Trail Council have a status of: “in negotiation and depended on submitted crossing permit applications,” presumably meaning they would agree to the easement if PA DEP approved Shell’s permits.

Falcon intersections with the Montour Trail

The Montour Trail is a 46-mile long multi-use non-motorized recreational rail-trail located in Washington and Allegheny County, PA, used by more than 400,000 people annually. It also makes up part of the Great Allegheny Passage (GAP), a trail system that stretches over 335 miles from Pittsburgh to Washington, DC. The trail is managed by the nonprofit Montour Trail Council with support from state agencies such as the Pennsylvania Department of Conservation and Natural Resources (DCNR).

We were surprised to find that the Montour Trail will be crossed by the Falcon in 9 locations: 5 by the pipeline itself, 3 by temporary access roads, and 1 by a permanent access road, as illustrated in the image above. Two of the pipeline intersections will be executed using HDD boring. The trail and its intersection with the Falcon can be seen by activating these layers on FracTracker’s interactive map, as illustrated in the image above.

 

* * *

Related Articles

By Kirk Jalbert, FracTracker Alliance

Falcon Pipeline: Cumulative Development & Compounded Risks

Part of the Falcon Public EIA Project

In this final section of the Falcon Public EIA Project, we explore the Falcon pipeline’s entanglements with a region already impacted by a long history of energy development. Featured in this article are where the Falcon pipeline intersects underground mining facilities, strip mines, other hazardous pipelines, active oil and gas wells, as well as a very large compressor station. We utilize this information to locate spaces where cumulative development also has the potential for compounded risk.

Quick Falcon Facts

  • 20 miles of the Falcon run through under-mined areas; 5.6 miles through active mines
  • 18 miles of the Falcon run through surface-mined areas; also coal slurry waste site
  • Shares a right-of-way with Mariner West pipeline for 4 miles in Beaver County
  • 11 well pads, as well as a compressor station, are within the potential impact radius

Map of Falcon relative to mined areas and other energy-related development

The following map will serve as our guide in breaking down where the Falcon intersects areas that have experienced other forms of energy development. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible as you zoom in. A number of additional features of the map are not shown by default, but can be turned on in the “layers” tab. These include information on geological features, water tables, soil erosion characteristics, as well as drinking reservoir boundaries. Click the “details” tab in full-screen mode to read how the different layers were created.


View Map Fullscreen | How FracTracker Maps Work

 

Mined Lands

The Falcon pipeline intersects a surprising number of active and inactive/abandoned mine lands. While the location of active mines is fairly easy to obtain from mine operators, finding data on abandoned mines is notoriously difficult. State agencies, such as the Pennsylvania Department of Environmental Protection (DEP), have digitized many legacy maps, but these resources are known to be incomplete and inaccurate in many locations.

AECOM’s engineers used data layers on active and abandoned mine lands maintained by state agencies in OH, WV, and PA. FracTracker obtained this data, as well, as shown on the interactive map. Shell states in their permits that AECOM’s engineers also went through a process of obtaining and digitizing paper maps in areas with questionable mine maps.

Shell states that their analysis shows that 16.8 miles of the Falcon pipeline travel through under-mined areas. Our analysis using the same dataset suggests the figure is closer to 20 miles. Of these 20 miles of pipeline:

  • 5.6 miles run through active coal mines and are located in Cadiz Township, OH (Harrison Mining Co. Nelms Mine); Ross Township, OH (Rosebud Mining Co. Deep Mine 10); and in Greene Township, PA (Rosebud Mining Co. Beaver Valley Mine). 
  • More than 18 miles run through areas that have been historically surface-mined (some overlapping under-mined areas).
  • Of those 18 miles, 1.5 miles run through an active surface mine located in Cadiz Township, OH, managed by Oxford Mining Company.

Beaver Valley Mine

The Beaver Valley Mine in Greene Township, PA, appeared to be of particular importance in Shell’s analysis. Of the three active mines, Shell maintained an active data layer with the mine’s underground cell map for reference in selecting routes, seen in the image below. Note how the current route changed since the map was originally digitized, indicating that a shift was made to accommodate areas around the mine. The FracTracker interactive map shows the mine based on PA DEP data, which is not as precise as the mine map AECOM obtained from Rosebud Mining.

Digitized map of Beaver Valley Mine

Rosebud Mining idled its Beaver Valley Mine in 2016 due to declining demand for coal. However, Rosebud appears to be expanding its workforce at other mines in the area due to changing economic and political circumstances. We don’t know exactly why this particular mine was highlighted in Shell’s analysis, or why the route shifted, as it is not directly addressed in Shell’s permit applications. Possibilities include needing to plan around areas that are known to be unfit for the pipeline, but also perhaps areas that may be mined in the future if the Beaver Valley Mine were to restart operations.

Coal Slurry Site, Imperial PA

As discussed in other segments of the Falcon Public EIA Project, Shell intends to execute 19 horizontal directional drilling (HDD) operations at different sites along the pipeline. A cluster of these are located in Allegheny and Washington counties, PA, with extensive historical surface mining operations. A 2003 DEP report commented on this region, stating:

All of the coal has been underground mined. Most of the coal ribs and stumps (remnants from the abandoned underground mine) have been surface mined… The extensive deep mining, which took place from the 1920’s through the 1950’s, has had a severe effect on groundwater and surface water in this watershed.

Shell’s applications note that AECOM did geotechnical survey work in this and other surface-mined areas co-located with proposed HDD operations, concluding that the ”majority of rock encountered was shale, sandstone, limestone, and claystone.” However, at one proposed HDD (called “HOU-06”) the Falcon will cross a coal waste site identified in the permits as “Imperial Land Coal Slurry” along with a large Palustrine Emergent (PEM) wetland along Potato Garden Run, seen below.

A Falcon HDD crossing under a wetland and coal slurry site

Foreign Pipelines

In addition to its entanglements with legacy coal mining, the Falcon will be built in a region heavily traveled by oil and gas pipelines. More than 260 “foreign pipelines” carrying oil, natural gas, and natural gas liquids, were identified by AECOM engineers when selecting the Falcon’s right-of-way (note that not all of these are directly crossed by the Falcon).

Owners of these pipelines run the gamut, including companies such as Williams, MarkWest, Columbia, Kinder Morgan, Energy Transfer Partners, Momentum, Peoples Gas, Chesapeake, and Range Resources. Their purposes are also varied. Some are gathering lines that move oil and gas from well pads, others are midstream lines connecting things like compressor stations to processing plants, others still are distribution lines that eventually bring gas to homes and businesses. FracTracker took note of these numbers and their significance, but did not have the capacity to document all of them for our interactive map.

Shared Rights-of-Way

However, we did include one pipeline, the Mariner West, because of its importance in the Falcon’s construction plans. Mariner West was built in 2011-2013 as part of an expanding network of pipelines initially owned by Sunoco Pipeline but now operated by Energy Transfer Partners. The 10-inch pipeline transports 50,000 barrels of ethane per day from the Separator plant in Houston, PA, to processing facilities in Canada. Another spur in this network is the controversial Mariner East 2

Mariner West is pertinent to the Falcon because the two pipelines will share the same right-of-way through a 4-mile stretch of Beaver County, PA, as shown below.

The Falcon and Mariner West sharing a right-of-way

Reuse of existing rights-of-way is generally considered advantageous by pipeline operators and regulatory agencies. The logistics of sharing pipelines can be complicated, however. As noted in Shell’s permit applications:   

Construction coordination will be essential on the project due to the numerous parties involved and the close proximity to other utilities. Accurate line location was completed; however, verification will also be key, along with obtaining proper crossing design techniques from the foreign utilities. A meeting with all of pipeline companies will be held to make sure that all of the restrictions are understood prior to starting construction, and that they are documented on the construction alignment sheets/bid documents for the contractor(s). This will save a potential delay in the project. It will also make working around the existing pipelines safe.

Shell’s attention to coordinating with other utility companies is no doubt important, as is their recognition of working near existing pipelines as a safety issue. There are elevated risks with co-located pipelines when they come into operation. This was seen in a major pipeline accident in Salem Township, PA, in 2016. One natural gas line exploded, destroying nearby homes, and damaged three adjacent pipelines that took more than a year to come back onlineThese findings raise the question of whether or not Class Location and High Consequence Area assessments for the Falcon should factor for the exponential risks of sharing a right-of-way with Mariner West.

Oil & Gas Extraction

The remaining features included on our map relate to oil and gas extraction activities. The Falcon will carry ethane from the three cryogenic separator plants at the pipeline’s source points. But the wet, fracked gas that supplies those plants also comes from someplace, and these are the many thousands of unconventional gas wells spread across the Marcellus and Utica shale.

We found 11 unconventional oil and gas pads, hosting a combined 48 well heads, within the Falcon’s 940-foot PIR. We also found a large compressor station operated by Range Resources, located in Robinson Township, PA. This is shown below, along with a nearby gas pad.

A well pad and compressor station in Falcon’s PIR

We noted these well pads and the compressor station because Class Location and HCA risk analysis may account for proximity to occupied businesses and homes, but does not always consider a pipeline’s proximity to other high-risk industrial sites. Nevertheless, serious incidents have occurred at well pads and processing facilities that could implicate nearby hazardous liquid pipelines. By the same measure, an accident with the Falcon could implicate one of these facilities, given they are all within the Falcon’s blast zone.

* * *

Related Articles

The Falcon: Methods, Mapping, & Analysis

Part of the Falcon Public EIA Project

FracTracker began monitoring Falcon’s construction plans in December 2016, when we discovered a significant cache of publicly visible GIS data related to the pipeline. At that time, FracTracker was looking at ways to get involved in the public discussion about Shell’s ethane cracker and felt we could contribute our expertise with mapping pipelines. Below we describe the methods we used to access and worked with this project’s data.

Finding the Data

Finding GIS data for pipeline projects is notoriously difficult but, as most research goes these days, we started with a simple Google search to see what was out there, using basic keywords, such as “Falcon” (the name of the pipeline), “ethane” (the substance being transported), “pipeline” (the topic under discussion), and “ArcGIS” (a commonly used mapping software).

In addition to news stories on the pipeline’s development, Google returned search results that included links to GIS data that included “Shell” and “Falcon” in their names. The data was located in folders labeled “HOUGEO,” presumably the project code name, as seen in the screenshot below. All of these links were accessed via Google and did not require a password or any other authentication to view their contents.

Shell’s data on the Falcon remained publicly available at this link up to the time of the Falcon Public EIA Project‘s release. However, this data is now password protected by AECOM.

Google search results related to Falcon pipeline data

Viewing the Data

The HOUGEO folder is part of a larger database maintained by AECOM, an engineering firm presumably contracted to prepare the Falcon pipeline construction plan. Data on a few other projects were also visible, such as maps of the Honolulu highway system and a sewer works in Greenville, NC. While these projects were not of interest to us, our assessment is that this publicly accessible server is used to share GIS projects with entities outside the company.

Within the HOUGEO folder is a set of 28 ArcGIS map folders, under which are hundreds of different GIS data layers pertaining to the Falcon pipeline. These maps could all be opened simply by clicking on the “ArcGIS Online map viewer” link at the top of each page. Alternatively, one can click on the “View in: Google Earth” link to view the data in Google Earth or click on the “View in: ArcMap” link to view the data in the desktop version of the ArcGIS software application. No passwords or credentials are required to access any of these folders or files.

As seen in the screenshot below, the maps were organized topically, roughly corresponding to the various components that would need to be addressed in an EIA. The “Pipeline” folder showed the route of the Falcon, its pumping stations, and work areas. “Environmental” contained data on things like water crossings and species of concern. “ClassLocations” maps the locations of building structures in proximity to the Falcon.

The HOUGEO GIS folders organized by topic

 

Archiving the Data

After viewing the Falcon GIS files and assessing them for relevancy, FracTracker went about archiving the data we felt was most useful for our assessing the project. The HOUGEO maps are hosted on a web server meant for viewing GIS maps and their data, either on ArcOnline, Google Earth, or ArcMap. The GIS data could not be edited in these formats. However, viewing the data allowed us to manually recreate most of the data.

For lines (e.g. the pipeline route and access roads), points (e.g. shutoff valves and shut-off valves), and certain polygons (e.g. areas of landslide risk and construction workspaces), we archived the data by manually recreating new maps. Using ArcGIS Desktop software, we created a new blank layer and manually inputted the relevant data points from the Falcon maps. This new layer was then saved locally so we could do more analysis and make our own independent maps incorporating the Falcon data. In some cases, we also archived layers by manually extracting data from data tables underlying the map features. These tables are made visible on the HOUGEO maps simply by clicking the “data table” link provided with each map layer.

Other layers were archived using screen captures of the data tables visible in the HOEGEO ArcOnline maps. For instance, the table below shows which parcels along the route had executed easements. We filtered the table in ArcGIS Online to only show the parcel ID, survey status, and easement status. Screen captures of these tables were saved as PDFs on our desktop, then converted to text using optical character recognition (OCR), and the data brought into Microsoft Excel. We then recreated the map layer by matching the parcel IDs in our newly archived spreadsheet to parcel IDs obtained from property GIS shapefiles that FracTracker purchased from county deeds offices.

Transparency & Caveats

FracTracker strives to maintain transparency in all of its work so the public understands how we obtain, analyze, and map data. A good deal of the data found in the HOUGEO folders are available through other sources, such as the U.S. Geological Survey, the Department of Transportation, and the U.S. Census, as well as numerous state and county level agencies. When possible, we opted to go to these original sources in order to minimize our reliance on the HOUGEO data. We also felt it was important to ensure that the data we used was as accurate and up-to-date as possible.

For instance, instead of manually retracing all the boundaries for properties with executed easements for the Falcon’s right-of-way, we simply purchased parcel shapefiles from county deeds and records offices and manually identified properties of interest. To read more on how each data layer was made, open any of our Falcon maps in full-screen mode and click the “Details” tab in the top left corner of the page.

Finally, some caveats. While we attempted to be as accurate as possible in our methods, there are aspects of our maps where a line, point, or polygon may deviate slightly in shape or location from the HOUGEO maps. This is the inherent downside of having to manually recreate GIS data. In other cases, we spent many hours correcting errors found in the HOUGEO datasets (such as incorrect parcel IDs) in order to get different datasets to properly match up.

FracTracker also obtained copies of Shell’s permit applications in January by conducting a file review at the PA DEP offices. While these applications — consisting of thousands of pages — only pertain to the areas in Pennsylvania where the Falcon will be built, we were surprised by the accuracy of our analysis when compared with these documents. However, it is important to note that the maps and analysis presented in the Falcon Public EIA Project should be viewed with potential errors in mind.

* * *

Related Articles

A Hazy Future Report Cover

A Hazy Future: Pennsylvania’s Energy Landscape in 2045

Report Calculates Impacts from PA’s Planned Natural Gas Infrastructure

FracTracker Alliance released the report: A Hazy Future: Pennsylvania’s Energy Landscape in 2045 today, which details the potential future impacts of a massive buildout of Marcellus Shale wells and associated natural gas infrastructure.

Industry analysts forecast 47,600 new unconventional oil and gas wells may be drilled in Pennsylvania by 2045, fueling new natural gas power plants and petrochemical facilities in PA and beyond. Based on industry projections and current rates of consumption, FracTracker – a national data-driven non-profit – estimates the buildout would require 583 billion gallons of fresh water, 386 million tons of sand, 798,000 acres of land, 131 billion gallons of liquid waste, 45 million tons of solid waste, and more than 323 million truck trips to drilling sites.

A Hazy Future - Impact Summary

“Only 1,801 of the 10,851 unconventional wells already drilled count as a part of this projection, meaning we could see an additional 45,799 such wells in the coming decades,” commented Matt Kelso, Manager of Data and Technology for FracTracker and lead author on the report.

Why the push for so much more drilling? Out of state – and out of country – transport is the outlet for surplus production.

“The oil and gas industry overstates the need for more hydrocarbons,” asserted FracTracker Alliance’s Executive Director, Brook Lenker. “While other countries and states are focusing more on renewables, PA seems resolute to increase its fossil fuel portfolio.”

The report determined that the projected cleared land for well pads and pipelines into the year 2045 could support solar power generation for 285 million homes, more than double the number that exist in the U.S.

A Hazy Future shows that a fossil fuel-based future for Pennsylvania would come at the expense of its communities’ health, clean air, water and land. It makes clear that a dirty energy future is unnecessary,” said Earthworks’ Pennsylvania Field Advocate, Leann Leiter. Earthworks endorsed FracTracker’s report. She continued, “I hope Governor Wolf reads this and makes the right choices for all Pennsylvanians present and future.”

A Hazy Future reviews the current state of energy demand and use in Pennsylvania, calculates the footprint of industry projections of the proposed buildout, and assesses what that would look like for residents of the Commonwealth.

Download Report (PDF)

About FracTracker Alliance

Started in 2010 as a southwestern Pennsylvania area website, FracTracker Alliance is a national organization with regional offices across the United States in Pennsylvania, the District of Columbia, New York, Ohio, and California. The organization’s mission is to study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation. Its goal is to support advocacy groups at the local, regional, and national level, informing their actions to positively shape our nation’s energy future.

Questions? Email us: info@fractracker.org.

Drilling on PA state lands

Energy development is happening on your state lands, Pennsylvania

Decisions to drill or mine on public lands, however, are often extremely complicated.

By Allison M. Rohrs, Saint Francis University, Institute for Energy

The Commonwealth of Pennsylvania has historically been, and continues to be, home to an abundant array of energy resources like oil, gas, coal, timber, and windy ridgetops. Expectedly, these natural resources are found both on publicly and privately held land.

In Pennsylvania, the bulk of public lands are managed by two separate state agencies: The Department of Conservation and Natural Resources (DCNR), which manages the state’s forest and park system, and the Pennsylvania Game Commission (PGC), which manages the state’s game lands. Both of these state agencies manage oil, gas, and coal extraction as well as timbering on state property. Interestingly, neither of the agencies have utility-scale renewable energy generation on their land.

Some of Pennsylvania’s best wind resources can be found on the mountain ridges in the Commonwealth’s state forests and game lands, however, all proposals to build utility-scale wind farms have been denied by state agencies.

(Note: there are other state and federal agencies managing lands in PA, however, we focused our research on these two agencies specifically.)

Surprised to see that state lands have been greatly developed for different fossil industries but denied for wind energy, The Institute for Energy set out on a yearlong endeavor to collect as much information as we could about energy development on PA public lands. Using formal PA Right to Know requests, we worked with both DCNR and PGC to examine development procedures and management practices. We reviewed hundreds of available state agency reports, scientific documents, and Pennsylvania energy laws and regulations. We also worked with FracTracker Alliance to develop interactive maps that depict where energy development has occurred on state lands.

After a comprehensive review, we realized, like so much in life, the details are much more complicated than a simple yes or no decision to develop an energy project on state lands. Below is a brief summary of our findings, organized by energy extraction method:

Land/Mineral Ownership in Pennsylvania

One of the most significant issues to understand when discussing energy resources on state lands is the complexity of land ownership in Pennsylvania. In many instances, the development of an energy resource on publicly owned land is not a decision, but instead an obligation. In Pennsylvania, property rights are often severed between surface and subsurface ownership. In many cases, surface owners do not own the mineral rights beneath them, and, by PA law, are obligated to allow reasonable extraction of such resource, whether it be coal, oil, or gas. In Pennsylvania, approximately 85% of state park mineral rights are owned by someone other than the Commonwealth (severed rights).

Fee Simple - Mineral rights on state lands

Legal Authority to Lease

It is critical to note that DCNR and PGC are two entirely separate agencies with different missions, legal structures, and funding sources. This plays a significant role in decisions to allow oil, gas, and coal development on their properties. Both agencies have explicit legal authority under their individual statutes that allow them to lease the lands for mineral extraction. This becomes more of an issue when we discuss wind development, where legal authority is less clear, particularly for DCNR.

Oil and Gas Extraction

Oil and gas wells have been spudded on state parks, state forests, and state game lands. The decision to do so is multifaceted and ultimately decided by three major factors:

  1. Mineral ownership of the land,
  2. Legal authority to lease the land, and
  3. Potential impacts to the individual agency.

There is currently a moratorium on new surface leases of DCNR Lands. Moratoriums of such nature have been enacted and removed by different governors since 2010. Although there are no new lease agreements, extraction and production is still occurring on DCNR land from previously executed lease agreements and where the state does not own the mineral rights.

The Game Commission is still actively signing surface and non-surface use agreements for oil and gas extraction when they determine the action is beneficial to achieving their overall mission.

Revenues from the oil and gas industry play a significant role in the decision to drill or not. Both agencies have experienced increasing costs and decreasing revenues, overall, and have used oil and gas development as a way to bridge the gap.

Funds raised from DCNR’s oil and gas activities go back to the agency’s conservation efforts, although from 2009 to 2017, the State Legislature had directed much of this income to the state’s general fund to offset major budget deficits. Just this year, the PA Supreme Court ruled against this process and has restored the funds back to DCNR for conservations purposes.

All revenues generated from oil and gas development on state game lands stays within the Game Commission’s authority.

Along with positive economic benefits, there remains potential health and environmental risks unique to development on these public lands. Some studies indicate that users of these public lands could have potential exposure to pollution both in the air and in the water from active oil and gas infrastructure. The ease of public access to abandoned and active oil and gas infrastructure is a potential risk, as well. On the environmental side, many have argued that habitat fragmentation from oil and gas development is contradictory to the missions of the agencies. Both agencies have independent water monitoring groups specific to oil and gas activities as well as state regulated DEP monitoring. The potential negative effects on ground and surface water quality is an issue, however, mainly due the vast size of public lands and limited dwellings on these properties.

Use the map below to explore the PA state parks, forests, and game lands that have active oil and gas infrastructure.

Oil and Gas Wells on State Lands in PA


View map fullscreen | How FracTracker maps work

Coal Mining

Thousands of acres of state forests and game lands have been mined for coal. Like oil and gas, this mineral is subject to similar fee simple ownership issues and is governed by the same laws that allow oil and gas extraction. DCNR, has not signed any virgin coal mining leases since the 1990s, but instead focuses on reclamation projects. There are coal mining operations, however, on forest land where DCNR does not own the mineral rights. The Game Commission still enters into surface and non-surface use agreements for mining.

In many circumstances, mining activity and abandoned mines were inherited by the state agencies and left to them to reclaim. Environmental and health impacts of mining specific to state land are generally attributed more to legacy mining and not to new mining operations.

Acid mine drainage and land subsidence has destroyed rivers and riparian habitats on these lands purposed for conservation.

The ease of public access and limited surveillance of public lands also makes abandoned mines and pits a dangerous health risk. Although threats to humans and water quality exist, abandoned mines have been noted for actually creating new bat habitat for endangered and threatened bat species.

Originally, we sought to quantify the total acreage of public lands affected by coal mining and abandoned mines; however, the dataset required to do so is not yet complete.

The Pennsylvania Department of Environmental Protection is currently in the process of digitizing over 84,000 hand drawn maps of mined coal seams in PA, an expected 15-year project.

Today, they have digitized approximately 30,000. The static map below demonstrates the areas with confirmed coal mining co-located on state lands:
Public lands and coal mining map - PA

Renewables

The discussion about renewable energy development in PA is almost as complex as the fossil industries. There are no utility-scale renewables on state owned land. Both DCNR and the Game Commission have been approached by developers to lease state land for wind development, however all proposals have been denied.

Even when DCNR owns the surface rights, they still cite the lack of legal authority to lease the land for wind, as their statute does not explicitly state “wind turbines” as a lawful lease option.

The Game Commission does have the legal authority to lease its land for wind development, but has denied 19 out of 19 requests by developers to do so, citing many environmental and surface disturbances as the primary reason.

Infographic regarding state land potential for wind energy

The development of wind projects in PA has slowed in the past five years, with only one new commercial wind farm being built. This is due to a variety of reasons, including the fact that many of windiest locations on private lands have been developed.

We estimate that 35% of the state’s best wind resource is undevelopable simply because it is on public land.

Like all energy development, wind energy has potential environmental and health impacts, too. Wind could cause habitat fragmentation issues on land purposed for conservation. The wind energy industry also has realized negative effects on bird and bat species, most notably, the endangered Indiana bat. Health impacts unique to public lands and wind development include an increased risk of injury to hunters and recreators related to potential mechanical failure or ice throw off the blades. Unlike fossil energies, however, wind energy has potential to offset air emissions.

We estimate that wind development on PA public lands could offset and estimated 14,480,000 tons of CO2 annually if fully developed.

Commercial wind turbines are currently being installed at hub heights of 80-100 meters where the annual average wind resource is 6.5 m/s or greater. The following map demonstrates areas of Pennsylvania where the wind speeds are 6.5 m/s or greater at 100 meters, including areas overlapping state lands, where no utility scale development has occurred.

PA Wind Potential on State Lands


View map fullscreen | How FracTracker maps work

Additional Renewables

Biomass is organic material, such as wood, that is considered renewable because of its ability to be replenished. The harvesting of such wood (timber) occurs on both DCNR and PGC lands and provides funding for these agencies.

Small-scale wind, solar, hydro, geothermal, and biomass projects do exist on PA public lands for onsite consumption, however no renewables exist on a commercial or utility scale.

Both the fossil and renewable energy industries are forecasted to grow in Pennsylvania in the years to come. The complex decisions and obligations to develop energy resources on PA public lands should include thoughtful management and fair use of these public lands for all energy resources.


For more information and details, check out the entire comprehensive report on our website: www.francis.edu/energy.

This work was supported by The Heinz Endowments.